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Outline 

•  A brief review of Z2 gauge theory with matter 

•  Constrained Z2 gauge theories with fermionic matter 

•  Unconstrained Z2 gauge theories with fermionic matter 
 
•  Conclusion and outlook 



Z2 gauge theory 

•  Introduced by Wegner (1971) as a model of continuous phase transition 
without a local order parameter 
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Z2 gauge theory with matter 

•  In CMP, Z2 gauge fields are emergent (slave-particle approaches) and 
are always accompanied by dynamical matter fields 

•  E.g.: Z2 spin liquid = Z2 gauge field + fermionic/bosonic spinons 

•  If matter is gapped, can be integrated out → reduces to pure gauge 
theory (e.g., topological phases) 

•  If matter is gapless, cannot be integrated out! Strongly coupled gauge + 
matter degrees of freedom, as hard to solve as original formulation (or 
harder). 
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•  Z2 gauge field + Ising matter 
field 

•  Matter has qualitative effect: 
phase diagram not just “tensor 
product” of Z2 gauge theory and 
Ising model 



Z2 gauge theory with fermionic matter 

•  Gauge theories with gapless fermionic matter have been much less studied; 
QMC simulations of such theories typically have a sign problem 

•  Exception: Z2 gauge field + spinful fermions has no sign problem! (Gazit et al., 
Nat. Phys. ‘17; Assaad, Grover, PRX ‘16) QMC simulations at & away from 
half-filling, T=0 and T>0 (t: fermion n.n. hopping) 

Gazit et al., Nat. Phys. ‘17 

(T = 0, µ = 0)



Z2 gauge theory with fermionic matter 

•  Gauge theories with gapless fermionic matter have been much less studied; 
QMC simulations of such theories typically have a sign problem 

•  Exception: Z2 gauge field + spinful fermions has no sign problem! (Gazit et al., 
Nat. Phys. ‘17; Assaad, Grover, PRX ‘16) QMC simulations at & away from 
half-filling, T=0 and T>0 (t: fermion n.n. hopping) 

Gazit et al., Nat. Phys. ‘17 

(T = 0, µ = 0)



Z2 gauge theory with fermionic matter 

•  Exactly/easily soluble Z2 gauge theories with fermionic matter? 

•  Spinless fermions? (would have a sign problem) 

•  Majorana fermions? 

•  Two main types of theories: 

•  Constrained: Gauss’ law is imposed = zero background Z2 charge (e.g., 
Gazit et al.) 

•  Unconstrained: Gauss’ law is not imposed = all background Z2 charge 
sectors are kept in the physical Hilbert space (e.g., Assaad & Grover) = 
theory with a (Z2)N symmetry with N = # of sites. 
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Wegner vs Kitaev 

•  The choice of Z2 gauge theory Hamiltonian is 
not unique, as long as it is gauge invariant 

•  Kitaev’s toric code is another choice: 

Y
⌧z

Y
⌧x

H
g

= �J
X

⇤

Y

ij2⇤
⌧z
ij

� h
X

+

Y

ij2+

⌧x
ij

⇠
Z �

B2 + (r ·E)2
�

•  Only electric field gradients cost 
energy = forces deconfinement of Z2 
electric charges (electric flux lines 
cost no energy) 



Toric code + spinless fermions 

•  Consider Kitaev’s Z2 gauge theory coupled to spinless fermions. For 
simplicity set magnetic field term to zero (J = 0) 

 
 
•  Gauge transformation operator: 

 
•  Constrained gauge theory: must impose Gauss’ law,  

•  Would have a sign problem in QMC (spinless) 
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Duality mapping 

•  To solve this model, introduce disorder (dual) variables: 
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Duality mapping 

•  To solve this model, introduce disorder (dual) variables: 

•  “Electric-magnetic” dual of the usual disorder variables on the dual lattice 
(Kogut, RMP ’79) 
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Duality mapping 

•  To solve this model, introduce disorder (dual) variables: 

•  Choice of string operator is arbitrary 
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Duality mapping 

•  In a given flux sector: 

•  In the dual variables, the Hamiltonian is 

 
•  Impose Gauss’ law constraint: 

 
•  Introduce new gauge-invariant fermion operators: 
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Bij is a static Z2 gauge field 
with the same flux as τz. 
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Emergent fermions 
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•  Maps to free gauge-invariant fermions in a static Z2 gauge field: 

 
•  Gauge coupling h simply shifts chemical potential! 

•  For h = µ/2 (half-filling), exact ground state is the π-flux phase (Lieb, PRL 
’94) 

•  Emergent Dirac fermions without breaking of physical translation symmetry 

•  Obeys modified Luttinger relation for Z2 fractionalized phases 
(Paramekanti & Vishwanath, PRB ‘04) 
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Z2 flux crystals 

•  Other rational p/q fillings: can do “classical” MC (flux optimization) 

 
•  Spontaneous translational symmetry breaking: flux crystals with              

flux per plaquette on average 

•  For U(1) fluxes optimal configuration is uniform               flux per plaquette 
(Hasegawa et al., PRL ‘89); for Z2 fluxes crystalline order is necessary 

•  Semimetallic states with two emergent Dirac cones in (reduced) BZ; Z2 
violation of Luttinger’s theorem for even-denominator fillings 
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Spinful fermions 

•  Additional SU(2) spin symmetry; at half-filling U(1) charge is enlarged to 
SU(2) pseudospin 

•  Gauge transformation operator: 

•  Introduce disorder variables as before 
 
•  Gauss’ law constraint imposes 

•  Introduce gauge-invariant fermion operators as before: 
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Spinful fermions 

•  Maps to Hubbard model in a static Z2 gauge field: 

•  Z2 gauge field mediates short-range (on-site) interaction between spin up/
down fermions 

•  Half-filling: Lieb’s theorem implies π flux per plaquette for all h 

•  π-flux Hubbard model is sign-problem-free (Otsuka, Hatsugai, PRB ’02; 
Parisen Toldin, Hohenadler, Assaad, Herbut, PRB ‘15; Otsuka, Yunoki, 
Sorella, PRX ‘16): 
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Z2 gauge theories in (1+1)D 

•  Similar models can be considered in (1+1)D: 

•  Disorder variables: 

•  Gauged spinless fermions → free gauge-invariant fermions 
•  Gauged spinful fermions → 1D Hubbard model for gauge-invariant fermions 

(half filling: charge/spin gap, away from half filling: Luttinger liquid) 
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Unconstrained gauge theories 

•  Keep all Z2 background charge sectors in the Hilbert space (e.g., Assaad, 
Grover, PRX ‘16) 

•  Models with (Z2)N symmetry, N = # of sites: intermediate between 
constrained Z2 gauge theory and theory with Z2 global symmetry (e.g., 
fermions coupled to Ising order parameter: Schattner, Lederer, Kivelson, 
Berg, PRX ‘16; Xu et al., PRB ‘17) 

•  Consider two examples: spinless fermions and Majorana fermions 

•  Introduce disorder variables and gauge-invariant fermions, but without 
projecting to gauge invariant subspace 

•  Equivalent to slave-spin representation of Falicov-Kimball-type models 
for gauge-invariant fermions 



Falicov-Kimball model 

•  Model of itinerant      fermions interacting with localized     fermions 
(Falicov, Kimball, PRL ‘69): 

•  Introduce slave-spin representation = Z2 version of the U(1) slave-rotor 
representation: fractionalize fermion into Ising spin and slave-fermion 
(Huber, Rüegg, PRL ‘09; Nandkishore, Metlitski, Senthil, PRB ’12) 

•  Fractionalization imposes local Z2 constraint (σz = mod 2 occupation): 
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Falicov-Kimball model 

•  (2+1)D Z2 gauge theory with spinless fermions but without projection to the 
gauge invariant subspace is equivalent to 2D Falicov-Kimball model in a 
static Z2 gauge field 

•  Background Z2 charge configurations =     electron configurations 
 
•  For µ = 0, ground state flux configuration is π flux per plaquette (Lieb); 

background Z2 charges form (π,π) crystalline order (Kennedy, Lieb, 
Physica A ‘86):     electrons acquire massive Dirac spectrum (~ Semenoff 
mass) 
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Majorana-Falicov-Kimball model 

•  Consider Falicov-Kimball model with a p-wave pairing term: 

•  Gapless p-wave     fermion superconductor (1 dispersing Majorana band 
+ 1 flat Majorana band) interacting with localized      fermions 

•  Equivalent to gauged (but unconstrained) superconductor: 
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Majorana-Falicov-Kimball model 

•  Model can be solved exactly: 

•  Slave-spin representation: 

•  Introduce new Majorana operators: 

•  Slave-spin Hamiltonian becomes a free Majorana model: 

 
•  Partition function/correlation functions can be calculated without the local Z2 

constraint owing to a local particle-hole symmetry: 
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Projection 

•  Imagine making gauge coupling site-dependent h → hi: model has “local” particle-
hole symmetry: 

•  Using                                   , one obtains: 

•  Repeating for h2, h3, …, hN eliminates P altogether  



Emergent fermion Green’s functions 

•  Itinerant Majorana fermion     behaves as free fermion (spectral function 
= delta function), but gapped by FK interaction/gauge coupling 

•  Localized     fermion is not free: spectral function ≠ delta function, gapped 
by FK interaction/gauge coupling (correlated insulator) 
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Conclusion 

•  Constructed Z2 gauge theories with dynamical fermionic matter at finite 
density that can be solved exactly/easily in many cases (or reduce to a 
known problem) 

•  Key ingredients: “deconfining” (Kitaev) electric field term, Ising duality, Z2 
slave-spin representation 

 
•  Phenomenology: emergent massless/massive Dirac fermions, violation of 

Luttinger’s theorem, Z2 flux/charge crystals, free-fermion/correlated 
metals, insulators, and superconductors 

•  Ongoing work: reinstate plaquette term in gauge field Hamiltonian (full 
toric code), transitions out of Z2 topological order by coupling to fermions? 
Also study ZN>2 gauge theories with fermions (QMC sign problem likely) 
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